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Rapidly rotating relativistic stars

By Jou~ L. FRieEpMAN! AND JAMES R. IPpsER?

! Department of Physics, University of Wisconsin—-Milwaukee, Milwaukee,
Wisconsin 63201, US.A.
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Within the last decade, significant progress has been made in modelling rotating
stars in general relativity and in relating observable properties to the equation of
state of matter at high density. A formalism describing rotating perfect fluids is
presented and numerical models of neutron stars are briefly discussed, with emphasis
on upper limits on mass and rotation. The equations governing small oscillations are
reviewed, and a variational principle appropriate both to eulerian and lagrangian
perturbations is obtained. This extends to relativity an eulerian principle used to find
non-axisymmetric stability points for perfect fluids. A related eulerian approach has
been recently used to obtain normal modes of rotating newtonian stars. The review
concludes with an outline of this work and of the two types of instability that can
restrict the range of neutron stars. In particular, current work shows that several
kinds of effective viscosity limit the possible role of a non-axisymmetric instability
driven by gravitational waves.

Y

A

THE ROYAL A
SOCIETY

PHILOSOPHICAL
TRANSACTIONS
OF

0. Introduction

Following the discovery of PSR 1937421, a pulsar rotating at frequency
0.4033 x 10% 571, the search for fast pulsars has accelerated. Within the past 10 years
more than 20 pulsars with periods less than 10 ms have been discovered, although
only one (PSR 1957+20) has a frequency comparable with that of the first
millisecond pulsar (Backer & Kulkarni 1991; Manchester et al. 1991). The next
decade may disclose an upper limit on pulsar rotation, and there is hope that the
mass of some fast pulsars may also be observed. It is not yet clear whether even the
fastest of the observed pulsars are rotating rapidly, in the sense of having a rotational
energy close to its maximum value. But the growing class of millisecond pulsars has
dramatized the possibility that accretion-driven spin-up of old neutron stars and
‘ accretion induced collapse of white dwarfs may each lead to rapidly rotating stars.
: We review here some of the work done in the past decade on the structure, stability
‘ and oscillations of rapidly rotating relativistic stars. The article is primarily
concerned with work done by the authors and their collaborators, and more emphasis
is given to recent work involving stellar oscillations than to work on equilibrium
models, which has been reviewed elsewhere (Friedman 1990, 1991; Parker 1990).
Related work by others is mentioned but is, in general, not presented in detail.
Section 1 discusses equilibrium configurations. The equations governing perfect
fluids and the construction of stellar models are reviewed in §1b. An extensive study
has been made by séveral groups of rapidly rotating stellar models, based on a wide
range of equations of state, and this work is outlined briefly in §1c. Section 1d
concludes the outline with a discussion of upper limits on mass and rotation. The
maximum rotation is sensitive to the equation of state (E0s) of matter above nuclear
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392 J. L. Friedman and J. R. Ipser

density. We emphasize limitations on the Eos that would follow from an observed
limit on the angular velocity of relativistic stars.

Section 2 discusses the oscillation and stability of rapidly rotating stars. In §2a a
formalism for discussing perturbations of relativistic stars is reviewed and extended.
We relate an action for the perturbation equations based on lagrangian displacements
to an action for normal modes based on eulerian perturbations that was obtained in
the newtonian limit by Ipser & Managan (1985) and in the relativistic Cowling
approximation by Ipser & Lindblom (1992a). This completes the extension to
relativity of the eulerian variational principle. In §2b, we discuss a related formalism
for treating normal modes of rapidly rotating stars. The formal development is
complete only in the newtonian limit, where it has been successfully used to obtain,
for the first time, non-axisymmetric modes of rotating models. Finally, in §2¢,
applications to stability are discussed. The region of stable configurations is limited
by an axisymmetric instability to collapse, and, for stars with sufficiently low
viscosity, by a non-axisymmetric instability that restricts the maximum rotation.
Recent work on dissipative mechanisms in neutron stars suggests that the non-
axisymmetric instability can only limit the angular velocity of recently formed stars.

1. Equilibrium equations
(a) Notation and mathematical preliminaries

(i) Conventions

Jravitational units, with G =c¢ =1, will be adopted in writing the equations
governing stellar structure and dynamics, while numerical properties of stellar
models will be listed in c.g.s. units. We use the conventions of Misner et al. (1973) for
the signature of the space-time metric (— + + +) and for signs of the curvature
tensor and its contractions. Space-time indices will be Latin a—% (and may be
regarded as abstract by readers familiar with the abstract index convection).
Corresponding to a choice of coordinates, ¢, 7, 0, ¢, a vector u® has components v/, ...,
u?; and its components along an orthonormal frame, {e, ..., e}, will be written
{w® o u®.

Numbers that rely on physical constants are based on the values:

c=29979%x 10" ecm s, G =6.670x10"%g em 3572
=1.0545x10"*" gem 2 g1,
nucleon mass m, = 1.659 x 107> g, M, = 1.989 x 10* g = 1.477 km.

(i1) Notation for derivatives and integrals
The covariant derivative operator of the spacetime metric g,, will be written V,,,
and the partial derivative of a scalar f with respect to one of the coordinates, say r,
will be written 0, f or f ,. Lie derivatives along a vector «” will be denoted by %,. The
Lie derivative of an arbitrary tensor 7%---% is
LG g =V e g =18 Veu — =T gVl + T8 g Vous + .+ T8 Vyue.
(1.1)
Our notation for integrals is as follows. We denote by dr the space-time volume
element. In a chart {x°, 2!, 2%, 2%}, the notation means,

dr = v/ —gd*. (1.2)
Phil. Trans. R. Soc. Lond. A (1992)
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Rapidly rotating relativistic stars 393
(Gauss’s theorem has the form
j V,A% = j A*dS,. (1.3)
0 ey

In a chart (u,z',x?,2°) for which S is a surface of constant u,dS, =+ —¢V, ud’,
and

f A“dSa=J A¥y/ —gdie. (1.4)
|4 v
If S is nowhere null, one can define a unit normal,

n, = V,u/|V,uVlul, (1.5)
and write dS, =mn,dV, where dV =+/|%g|d%, (1.6)

but Gauss’s theorem has the form (1.3) for any 3-surface S, bounding a four-
dimensional region £, regardless of whether § is timelike, spacelike or null.

(b) Perfect fluids and equilibrium configurations
(i) Equations governing perfect fluids

It is widely believed that pulsars and most compact X-ray sources are neutron
stars. The uncertainty in the behaviour of matter at high density, however, is
underlined by the recent attention given to the Bodmer-Witten suggestion that for
collections of more than a few hundred baryons, the ground state at zero pressure
may be strange quark matter instead of iron (Bodmer 1971; Witten 1984). If this
is true, and if it is possible for neutron matter to tunnel to quark matter in at least
some neutron stars, then it appears likely that all ‘neutron stars’ would have to be
quark stars (Madsen 1990, 1991; Friedman 1990; Caldwell & Friedman 1991). This
appears inconsistent with observations of glitches (Alpar 1988) if they require the
existence of a thick crust of normal matter. (A bibliography including over 50 articles
on strange stars can be found in Madsen (1992).)

In neutron stars, departures from perfect fluid equilibrium due to a solid crust are
of order 10~%, corresponding to the maximum strain that an electromagnetic lattice
can support. The estimate is consistent with observations of glitches, sudden
observed increases in the frequency of a pulsar, presumably in the angular velocity
of a neutron star’s outer crust. As the star spins down, its moment of inertia deviates
slightly from that of a fluid because its solid crust allows small anisotropic stresses.
It was initially thought that glitches were crustquakes, the quick spin-up due to a
sudden decrease in the moment of inertia of the crust as the quake allowed it to relax
to shape of a fluid equilibrium. Other explanations involve sudden unpinning of
vortex tubes, producing a rapid redistribution of angular momentum from superfluid
to crust; a hybrid mechanism in which a crust breaks to allow the pinned vortex
tubes to move; and an onset of superfluid turbulence in the crust when the difference
between the crust and superfluid angular velocity reaches a critical value. (See
Epstein (1988) for references and a review.) In each of these models, however, the
difference between the effective moment of inertia (angular momentum of
star/angular velocity of outer crust) is in principle limited by the maximum strain
that a solid crust can support. If some or all glitches are associated with crustquakes,
the maximum fractional strain is approximated by the fractional displacement of the
crust in a glitch, again of order 107°.

Phil. Trans. R. Soc. Lond. A (1992)
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On a submillimetre scale, superfluid neutrons and protons in the interior of a
neutron star have velocity fields that are curl-free outside a set of quantized vortices.
On larger scales, however, a single, averaged, velocity field u* accurately describes a
neutron star (Baym & Chandler 1983; Sonin 1987; Lindblom & Mendell 1991).
Although the approximation of uniform rotation is consequently invalid on scales
shorter than 1 cm, the error in computing the structure of the star on larger scales
is negligible. In particular, with 7 approximated by a value, (7*) averaged over
several centimetres, the error in computing the metric is of order

8 ~ (1 em/R)2 ~ 10711, (1.7)

(For a time-independent geometry, the field equations, ¢,, = 877},, can be written

as coupled elliptic equations for g,, with source 7). The error 8¢, satisfies a second-

order elliptic equation whose source, 87}, = 1,,—{1,>, is rapidly varying. Then,
p q ab ab ab 1Y y y g

writing 0%g &~ R™%g,0*8g &~ A"2 8¢, where A &~ 1 cm is the characteristic wavelength of
8T, we recover (1.7).)
A perfect fluid is described by an energy-momentum tensor of the form,

T% = euu® + pqg*?, (1.8)
where the 4-velocity «® is a unit timelike vector field,
uu, = —1, (1.9)
and ¢ is the projection orthogonal to u%,
g = g* +uu’. (1.10)

The scalars € and p are the energy density and pressure measured by a comoving
observer (an observer with 4-velocity u*). By projecting the equation of motion,

vV, T4 =0, (1.11)
orthogonal to the 4-velocity u*, one obtains the relativistic form of Euler’s equation,
wVyu, =—(+p) ¢V, p; (1.12)
and the projection along u” expresses conservation of energy in the manner,
uVye =—(e+p)V,u. (1.13)
A two-parameter equation of state can be written in the form,
e=¢n,s), p=mpn,s), (1.14)

where n and s are baryon density and entropy per baryon, respectively. A one-
parameter equation of state suffices to describe a neutron star for most of its history,
because within days after formation, neutrino emission cools the stars to 10 K ~
1 MeV. This is much smaller than the Fermi energy of the interior, in which a density
greater than nuclear (0.18 f m~®) implies a Fermi energy greater than €,(0.18 f m™3)
~ 60 MeV. A neutron star is in this sense cold, and because nuclear reaction times are
shorter than the cooling time, one can use a zero-temperature equation of state (E0s)
to describe the matter:

€ =¢(p) or, equivalently, e=¢e(n) p=p(n). (1.15)
We shall denote by p the baryon mass density,
p=myn, (1.16)
Phil. Trans. R. Soc. Lond. A (1992)
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Rapidly rotating relativistic stars 395

with m, is the mass of a nucleon. Conservation of baryons is expressed by

V,(nu®) = 0. (1.17)

In terms of the scalars n and s, the second law takes the form
de = Tds+n"Ye+p)dn. (1.18)
The quantity, h = (e+p)/n, (1.19)

is the comoving enthalpy per baryon, h = (e+p)/p is the enthalpy per unit rest mass,
and
g=(e+p)/n—"Ts (1.20)

is the Gibbs free energy per baryon. In the newtonian limit,

~

h—1->u+p/p, (1.21)

the newtonian specific enthalpy, with « the internal energy per unit mass.
A stationary flow is described by a space-time with a timelike Killing vector, %, the
generator of time-translations that leave the metric and the fluid variables fixed:

LY = Gu* = Le=ZLp=0. (1.22)

Bernoulli’s law is the newtonian conservation of enthalpy for a stationary flow, and
its relativistic form is

&, (huy, t°) = 0. (1.23)
To obtain (1.23), one uses the relation,
(u* Vo h)/h = (u*V,p)/(e+p), (1.24)

which itself follows from conservation of energy and baryon number, (1.13) and
(1.17): that is, from

C(uV,e)/(e+p) ==V, u? = (u*V,n)/n, (1.25)

a
we have, u“Va(#z)=%(u“Vae+u“Vap)—€:—2pu“Van=u—zﬁg. (1.26)
Because L ug = ul Vyuy,+u, Voub = ubVyu,, (1.27)

the Euler equation, (1.12), becomes
’%&(kua) = _(Vap)/n (128)

Contracting this form of the Euler equation with #* and using (1.22), we obtain (1.23).
The derivation holds for any Killing vector that Lie-derives the fluid variables, and,
for an axisymmetric flow, yields conservation of a fluid element’s angular momentum
in the form,

Z, (hu, ¢°) = 0. (1.29)

From a mathematical perspective, introducing a conserved baryon number is
merely convenient. Instead of defining the specific enthalpy by & = (¢+p)/p, one can
take as the definition

~ » dp
i = L 1.30
eXpL €(p,s)+p (1.30)

Phil. Trans. R. Soc. Lond. A (1992)
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396 J. L. Friedman and J. R. Ipser
Again one has (1.24), WV, h)/h = u*V,p)/(e+p), (1.31)
implying the corresponding Bernoulli equation,

L (hu, 1) = 0. (1.32)

One needs additional physics, the relations, ¢/p -1 and p/p—0, as p— 0 for fixed s,
to make the identification, }
h=h/m, = (e+p)/p. (1.33)

The flow of an isentropic fluid conserves circulation. If one defines a relativistic
vorticity w,, by
W, = V, (hu,) —V,(hu,), (1.34)

the differential conservation law is the curl of (1.28),
L Wy, = 0. (1.35)

The corresponding integral law is obtained as follows. Let ¢ be a closed curve in the
fluid, bounding a 2-surface 2'; and let ¢, be the curve obtained by moving each point
of ¢ a proper time 7 along the fluid trajectory through that point. From the relation,

cg;wab = Va cg;a(hub)_vb %(kuaL (136)
we have 0= J Z, 0y, S = J &, (hu,)dl®
z 4
d a
= a;J;,huadl s (137)

where Stokes’s theorem was used to obtain the first equality. That is, the line

integral,
f huadl"”:J P, e (1.38)
C. c. n

T T

is independent of 7, conserved by the fluid flow.

(ii) Geometry of a rotating star

The metric g,, of a stationary axisymmetric rotating fluid has two commuting
Killing vectors, ¢* and t%, generating rotations and asymptotic time-translations.
The symmetry of the metric means the vanishing of its Lie derivatives:

£9ap = Valy+V,t, =0, £¢gab=Va¢b+Vb¢a=O‘ (1.39)
The commutator [¢, ] is again a Lie derivative. Its vanishing,
£,¢% =0, (1.40)

implies the existence of a family of 2-surfaces spanned by t* and ¢® and of scalars,
t, ¢, for which

1Vt =¢*V,p=1, t*°V,¢p=¢*V,t=0. (1.41)
The fluid’s 4-velocity has the form,
Ut = ut(t+ Qg), (1.42)

where v’ = u*V,t, implying (Kundt & Trumper 1966 ; Carter 1969) the existence of
Phil. Trans. R. Soc. Lond. A (1992)
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Rapidly rotating relativistic stars 397

a family of 2-surfaces orthogonal to the Killing vectors. The metric, g¢,,, can be
written in terms of dot products of the Killing vectors, t*,, t°¢,, ¢, and a
conformal factor, e, that characterizes the geometry of the orthogonal 2-surfaces:

gt =V, V% = —e ¥,

Ipp = Pip, = e, (1.43)
Gop = 1P, = —we™.
Then Gy =1, = —e¥+w?e?, (1.44)
and ds? = —e” di*+ e (d¢p — w di)? + e*(dw? + d2?), (1.45)

where w and z are cylindrical coordinates labelling the 2-surfaces orthogonal to ¢* and
a

The Killing vectors have components,
=20}, ¢' =20, (1.46)

and the symmetry (1.39) means that the potentials v, ¥, w and # depend only on @
and z. Because of the choice of an overall conformal factor, e*, to describe the
geometry of the w—z surfaces, the exterior of a spherical star given by (1.45) is
essentially the Schwarzschild geometry in isotropic coordinates,

1—M/2r M\? M\?
[ N S Vo= —_— /= —
e M2 e m<1+2r) , e (H—Qr) . (1.47)
Asymptotically, the relations
e/ =w(e”+0(r?), e =e"+0(r?), (1.48)

hold for the potentials, (1.47), and for the metric (1.45) as well, because any
stationary, asymptotically flat space-time agrees with the Schwarzschild geometry
to order r~1. If, following Bardeen & Wagoner (1971), we write

B=y+v, {=p+v, B=w'e, (1.49)

then, asymptotically, g (or B) deviates by O(r~%) from its value in the isotropic

Schwarzschild metric; and ¢, which vanishes for isotropic Schwarzschild, is itself of

order r2.

The angular velocity w = —%¢,/¢’P,, measures the dragging of inertial frames in
the sense that particles with zero angular momentum move along trajectories whose
angular velocity relative to infinity is d¢/d¢ = w. A natural tetrad is the frame of
zero-angular-momentum-observers, with basis covectors

0@ =¢e'dt, 0V =e'(dp—wdl), 0? =e'dw, o® =e'dz (1.50)
and the corresponding contravariant basis vectors are
ey =€ (0, +wdy), eqy=eVy ey =€y, eg =e"D, (1.51)

The non-zero components of the four velocity u* along these frame vectors can be
written in terms of a fluid 3-velocity v in the manner

uw® = 1/4/(1—2%), u® =0/4/(1—0?). (1.52)
Then uwt=u'V,t=e"/y/(1—2%), u?=uV, ¢ =Qu' (1.53)
Phil. Trans. R. Soc. Lond. A (1992)
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where  is the angular velocity of the fluid relative to infinity (measured by an
asymptotic observer with 4-velocity along the asymptotically timelike Killing
vector, *). The 3-velocity, v, written in terms of €, is

v=e""(Q—w). (1.54)

Note that 2me? is the circumference of a circle centred about the axis of symmetry
(the z-axis); that is, e¥ agrees for spherical stars with 7sin 6, where r and 6 are the
usual Schwarzschild coordinates (not the isotropic coordinates introduced above). As
noted earlier, on scales larger than centimetres, we can represent neutron star matter
by the energy—momentum tensor, 7% = eu®u?, of a perfect fluid. The non-vanishing
tetrad components are

T(O)(O) —_ (€+p?)2)/(1—?)2), T(O)(l) — (€+p)v/(1—7)2), (155)
TOD = (e +p)/(1—0?), TP =TOO = p (1.56)
The four potentials are determined by four components of the field equation
G, = 8nT,,, (1.57)
whose selection is a matter of taste. Following Bardeen & Wagoner (1971),
Butterworth & Ipser (1976) based their code on the four equations,
e FRO©) _ o—p+2vptt.
VOV, vt ViV, 0 = —8me flle+p) (L+0%)/(1—0)+2p];  (1.58)
e/ ¥ROD = 2R}:

Ve(e 4V, w) =—16ne/ %+ p)v/(1—v?); (1.59)
eHEDD L GO O = ofU(Q @G, ) = e HROO RO,
VeV, = 16me’p; (1.60)

and
22 (3) — sz
/u‘,mﬂ,z-i'//’,zﬂ,m_lb),mz_ﬁ’mﬂ,z—2v,mV,z+ﬁ,zV,m_%ezﬂ_h_gﬂw,mw,z = 0. (1‘61)

For reference, we list the equations corresponding to the three remaining non-
vanishing components of G

— e PO — _ g—ptavytt.
VeV, (f +p)] -1 ViV, 0 =—8teHe—po?)/(1-0%);  (1.62)
— e BRMLHM) — _e—3/f+2uR¢¢:
VeV, 412 VoV, 0 = —8ne (e +p) /(1 —v?); (1.63)

eHHGDD —GOD) = A~ ()
ﬂ,mm—/B/A,zz—z(ﬂ,m/",m_ﬂ,z/",z+ V,m w,m—v,z wyz)_%e/ﬂw[w'?ﬂwg] = 0. (164)

These last three equations are of course redundant, because the Bianchi identities
express linear combinations of them and their first derivatives in terms of equations
(1.58)—(1.61).

(¢) Properties of stellar models

For a one-parameter equation of state, p = p(¢), the uniformly rotating equilibria
form a two-dimensional set, shown in figure 1 as a surface in e¢,~J-M space, with ¢,
the central density, J/ the angular momentum and M the mass of a star. The part of

Phil. Trans. R. Soc. Lond. A (1992)


http://rsta.royalsocietypublishing.org/

THE ROYAL
SOCIETY 4

PHILOSOPHICAL
TRANSACTIONS
OF

. \

A \

/an \

A
y 9

THE ROYAL
SOCIETY

PHILOSOPHICAL
TRANSACTIONS
OF

Downloaded from rsta.royalsocietypublishing.org

Rapidly rotating relativistic stars 399

&

J

Figure 1. Equilibrium configurations form a two-dimensional set X, depicted here as a surface
embedded in the space with coordinates J, M, and ¢,. The projection of 2 on the JM-plane doubles
back on itself, leaving points to the right uncovered.

the surface where M increase monotonically with increasing €, is the region of stars
stable against collapse (see §2d).

The boundary of this stable region has four parts. The angular momentum is
bounded between J = 0 and a maximum value at fixed baryon number for which the
equator of the star rotates at the Kepler frequency of a particle in circular orbit. The
line of maximum central density is along the maximum-mass ridge. However, only
part of the line of stable stars with minimum central density lies along a valley of
minimum mass, where AM(e,,J)/%, = 0. For rapidly rotating models, as one
decreases ¢, at fixed J, the angular velocity of star’s equator reaches the Kepler
frequency before an extremal value of mass is attained. The corresponding moment
of inertia is defined by

I1=J/Q. (1.65)

For a given equation of state, models with the largest values of angular velocity
(and angular momentum) have the largest masses. These stars are supported by their
rotation, and have baryon number larger than the upper limit for spherical stars. A
star like this cannot lose its angular momentum without collapsing: its evolutionary
path is a path of constant baryon number, and the star collapses when it reaches the
maximum-mass ridge in the diagram.

Models of rotating relativistic stars have been computed by several different
authors. Early codes were obtained by Bonazzola & Schneider (1974) and Wilson
(1972). Butterworth & Ipser (1976), following a newtonian algorithm due to Stoeckly
(1965), incorporated more precise asymptotic conditions, obtaining an accurate code
that was used to construct polytropes and uniform-density configurations, the
relativistic analogues of the newtonian Maclaurin spheroids. The code was modified
by Friedman et al. (1986) to accommodate a set of proposed equations of state (Eos)
for matter above nuclear density, and several hundred models were constructed to
find the characteristics of rotating relativistic stars for a wide range of Eos.
Additional models, including some based on an Eos for quark matter, were

Phil. Trans. R. Soc. Lond. A (1992)
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400 J. L. Friedman and J. B. Ipser

constructed in the wake of the spurious observation of a 0.5 ms pulsar in SN1987 by
these authors (Friedman et al. 1989) and by Lattimer et al. (1990), whose code was
similarly based on the Butterworth—Ipser algorithm. Komatsu et al. (1989a) have
recently obtained a successful code with a somewhat different algorithm. In the
Butterworth-Ipser approach, the equations for each potential are discretized to give
a matrix acting on the vector of values of that potential, and the matrix is inverted
to solve the equation. Komatsu et al. separate off laplacian operators with constant
coefficients which they invert by numerical integration of an analytic Green’s
function. They construct differentially rotating polytropes, including a set of toroidal
configurations, and the method may be useful for modelling accretion disks about
black holes. Finally, Cook et al. (1992) have constructed a set of polytropic models
with a code based on the method of Komatsu et al.

Nearly all observed neutron stars are rotating slowly enough that they can
accurately be modelled by using the Hartle’s (1967) slow-rotation formalism. To
0(2?), the structure of the star can be found by integrating a set of ordinary
differential equations. These are valid for Q < 2y, the Kepler frequency of a satellite
in circular orbit at the equator. A review of rotating neutron stars based on an
extensive set of slowly rotating models can be found in Datta (1988). Recent work
by Weber et al. (1991) and Weber & Glendenning (1991, 1992) uses Hartle’s
formalism to estimate properties of rapidly rotating stars. Although the radius and
shape of a star rotating at nearly its maximum frequency depart substantially from
the slow-rotation approximation, in numerical models based on the exact equations,
the metric is near that given by the slow-rotation formalism. Weber ef al. argue that
the maximum frequency can be accurately approximated as well. Using (1.67) below,
with metric and radius evaluated to O(£2), they solve 2 = Qy ().

The mass, baryon mass, and angular momentum of a rotating relativistic star are
integrals over the fluid:

M= J(’J}lb—%gab TytntdV, M,= quan“dV, J = J‘ﬂw ¢ n?dV.  (1.66)

The maximum angular momentum for a uniformly rotating stellar model
corresponds to an angular velocity equal to the Kepler frequency, 2y, the angular
velocity of a particle in circular orbit at the equator. This has the form,

Qu = 0+ )20 + [V [ + (0 |207)2]R. (1.67)

As a spherical star spins up, it becomes oblate, and the Kepler frequency of a particle
at larger equatorial radius is correspondingly smaller. By the time the star itself
rotates at the Kepler frequency, 2y has typically fallen to about 60 % of its value
for the spherical configuration with the same baryon number.

The uncertainty in the nuclear ros leads to sharp differences in possible models of
rotating stars. For the softest Eos, 1.4M , non-rotating models have radii of about
8 km, while models based on the stiffest Eos (consistent with the fastest observed
pulsars) are much less centrally condensed, with non-rotating radii of about 15 km.
For the corresponding rotating models, the ratio of the radii is not substantially
different, about 12 km for the softest models compared with 20 km for the stiffest.
The ratio of the moment of inertia, however, is enhanced by rotation, and this leads
to the sensitivity, mentioned in the next section, of the maximum frequency of
rotation on the Eos. Figure 2 displays moments of inertia for a set of equations of
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Figure 2. Moment of inertia is plotted against equatorial radius for sequences of models based on
equations of state C, ', G, and L. for each E0s, a sequence of spherical models is represented by
a dashed line, while a solid line represents models rotating at maximum (keplerian) angular
velocity, 2 = Q. Along each curve with Q = Q,, tickmarks are labelled with the value of the
model’s central density in units of 10'% g cm™2,

state that span the range of compressibilities from ros G, slightly softer than needed
to allow a 1.4M spherical star, to gos L, slightly too stiff to allow a 642 Hz pulsar
with a mass of 1.4M . (The first constraint is clearly needed from the well-determined
masses of binary pulsars. The constraint set by rotation assumes that the masses of
the fastest pulsars are not much larger than 1.4M.) Note that for each Eos, the
configuration with maximum moment of inertia has less mass than the maximum
allowed by the ros.

The model with largest mass, however, is also the model with the largest baryon
number, angular momentum, red- and blueshifts, and the largest value of the frame
dragging frequency, w among all uniformly rotating configurations stable against
collapse. However, Shapiro et al. (1990) found for newtonian polytropes, that just
before to the termination point of sequence of rotating models, where Q2 = Q. the
angular velocity can turn over as a function of angular momentum. Cook et al. (1992)
have recently extended the investigation to relativistic polytropes, for which the
effect is more pronounced, but for compressibilities characteristic of neutron star
matter the difference between £ and the maximum angular velocity appears to be
either small or non-existent. To within the accuracy of the numerical studies of
‘realistic’” equations of state proposed for neutron star matter (Friedman et al. 1986,
1989; Lattimer et al. 1990), there was no observed distinction between the model
with maximum mass (and angular momentum) and a model with maximum angular
velocity. No such distinction was sought, however, and it remains to be seen whether,
for proposed neutron star equations of state, the configurations with maximum mass
and angular velocity coincide.

Phil. Trans. R. Soc. Lond. A (1992)
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(d) Limits on masses and rolation rates of relativistic stars

The precise upper mass limit on a relativistic star depends on the density below
which one believes that the ros is known. If one demands a one-parameter EOS,
satisfying

dp/de = 0, (1.68)
and dp/de < 1 (1.69)

then a spherical star with a standard Eos below ¢, obeys the empirical formula

(Hartle 1978), L
M < 6.8(¢,/(10M g cm‘s))‘EMo. (1.70)

The apparent upper limit of about 3.2M 5 on stellar models based on proposed
equations of state for matter above nuclear density would correspond here to
assuming that one knows the E0s below 4.5 x 10'* g em™ (Rhoades & Ruffini 1974).
For uniformly rotating stars, the limit (1.70) is higher by 24-25%, over the
maximum mass for non-rotating configurations (Friedman & Ipser 1987),

M < 8.4(e,/(10™ g em™))E M ;.. (1.71)

Using two different candidates (Negele-Vauthrin & Baym-Pethick—Sutherland) for
the ‘known’ E0s below nuclear density gave agreement to within 1% in the upper
mass.

The causality constraint, (1.69), is not above suspicion. The quantity (dp/de): is
the phase velocity of hydrodynamic waves in a neutron star, but it is not clear that
microcausality or an analogous requirement on the group velocity enforces (1.69).
The limit (1.71) is empirical, found to occur, as expected for the stiffest Eos consistent
with (1.69), namely p = e+ const., for € > ¢, There is as yet no proof that
maximizing stiffness for rotating stars maximizes the upper mass. The change in
mass for models based on Eos for nuclear matter is discussed below.

We emphasized in the last section the large differences in radius and moment of
inertia of rapidly rotating models that have the same baryon number but are based
on different ros. The difference in the limiting angular velocity is equally dramatic.
The most compact models (corresponding roughly to the softest equations of state)
can rotate with angular velocities three times as large as models with the largest radii
and stiffest £os. If neutron stars spun up by accretion or formed by accretion-
induced collapse of white dwarfs can rotate at their limiting angular velocity, then
one can hope to observe that limit; to see an excess of pulsars rotating with nearly
the velocity of the fastest observed pulsar (Friedman 1973; Friedman et al. 1986;
Imamura et al. 1987). Knowing the limiting frequency would sharply constrain the
EOS above nuclear density.

At present the two fastest pulsars have frequencies within 3% of each other, at
4033 and 3910 s™'. Because the magnetic fields of the two pulsars differ by a factor
of at least 1.8, if the pulsar’s frequency is limited by their magnetic field rather than
by gravity, the 3% agreement would have to be coincidental. If they are in fact
rotating at or near their limiting frequencies, and if their masses are at least 1.4,
then the Eos above nuclear density must be unexpectedly stiff (Lipunov & Postnov
1988 ; Friedman et al. 1988).

As is discussed in §2¢, the maximum frequency can depend on whether a pulsar
is'spun up by accretion or is formed from accretion induced collapse. In the former
case the Kepler frequency is likely to set the limit; but the angular velocity of a

Phil. Trans. R. Soc. Lond. A (1992)
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Figure 3. Sequences of uniformly rotating neutron stars of baryon mass M, = 1.4M, for equations
of state tabulated by Arnett & Bowers (indicated by letters), together with the more recent
Friedman-Pandharipande equation of state (FP). The keplerian termination point of each
sequence is indicated by a dot. The diagonal line crossing the sequences is a conservative estimate
(that is, an underestimate) of the smallest rotation for which the models could be unstable to non-
axisymmetric perturbations. The £ values for PSR1937 4214 and PSR1957 420 are indicated by
the upper and lower dashed lines, respectively.

neutron star formed in the collapse of a white dwarf can be limited by a non-
axisymmetric instability. It appears, however, that the two limiting frequencies are
close to one another. For newtonian models, Lindblom & Ipser find that the non-
axisymmetric stability limit, €2, is within 10% of Q.

We expect a similar result in the relativistic case, and the reason is suggested by
figure 3. The figure is a slight modification by Imamura et al. (1988) of a graph from
Friedman et al. (1986). Each line corresponds to the sequence of neutron stars with
baryon mass approximately 1.4M, and ros labelled by a letter next to the
termination point of the sequence (at 2 = Q). Angular velocity is plotted against
the parameter ¢ = T/|W|, the ratio of rotational energy to potential energy of
rotating stars. The diagonal curve crossing the sequences underestimates (we believe)
the value of ¢ for which the models could be unstable to non-axisymmetric
perturbations. The estimate is based on the dependence of ¢ on the polytropic index
for newtonian stars. The key feature of the curves is their flatness near the
termination points. Even if the instability point had a value of 7'/|W| as small as that
shown, €,;,, would not differ by more than about 15% from Q. In addition, the
stability (under)estimate here and the computation of Lindblom & Ipser in the
newtonian case both used a viscosity that ignored the bulk viscosity recently
discussed by Sawyer and an effective viscosity arising from the interaction of
electrons with superfluid vortices discussed by Lindblom & Mendell (see §2d).

From figure 3 it is apparent that only the stiffer Eos are consistent with a limiting
frequency near 4033 s71. If one assumes that the frequency of each pulsar is within
25% of the limiting value, then of 11 Eos used in the tabulated models of Arnett &
Bowers, only four models (L, M, N and O) are consistent with M > 1.4M .

Phil. Trans. R. Soc. Lond. A (1992)
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Table 1. Models with maximum mass and rotation for the equations of state mentioned in the text

equation

of state Q e M/M, (%) M,/M, R T/W I cJ/GM* e g
L 076 111 318 (200 372 17.3 0.122 7.87 068 0.69 0.34
PAL1 1.00 311 1.73  (15) 1.93 13.0 0.090 154 058 070 045
D 1.04 278 194 (17) 221 12.7  0.11 200 063 069 040
C 111 271 216 (17 247 129 0.11 242 064 068 035

)
PAL3 1.16  3.98 1.65 (15) 1.85 11.3  0.094 123 059 069 047
FP 1.23 2.5 2.30 (17) 2.71 12 0.13 2.41 070  0.67 0.28
F 1.24 4.1 1.66 (13) 1.87 11 0.094 1.16 060 067 0.39

1.28 3.29 1.94 (17) 2.25 10.8  0.117 1.71 0.66  0.67 0.33
) 2.02 9.18 0.121 115 066 0.66 0.30
) 1.91 92 0107 098 064 066 0.31
) 1.73 8.6 0.101 086 0.62 0.62 0.34

A

T 154 447 174 (15
B 157 516 165 (17
G 152 55 155 (14

The properties listed are £, angular velocity in 10* s™, ¢,, central density in 10'5 g cm™, M/M
and (%), gravitational mass and its percentage increase over the maximum mass of the spherical
model; M,/M, baryon mass; I, equatorial radius [(proper circumference)/2x] in km; 7'/W, ratio
of rotational energy to gravitational energy; I, moment of inertia in 10* g cm?, cJ/GM?,
dimensionless ratio of angular momentum J to M?, e, eccentricity ; and S, injection energy.

Extensive calculations of the equilibria of rapidly rotating relativistic stellar
models (Friedman et al. 1986, 1989 ; Lattimer et al. 1990) have yielded considerable
insight into the structural properties of neutron-star models, including their
dependence on the assumed form of the high-density equation of state. In the present
brief discussion of these properties, we shall use as a framework the discussion of
Friedman et al. (1989), with particular focus on the information contained in table 1
and figure 1 of that reference, which are reproduced here as table 1 and figure 4. The
data restrict attention to uniform rotation, as is appropriate in the presence of
viscosity, and contain information about a particular complex of representative Eos
that have been proposed for neutron stars. Most of these E0s are from the Arnett &
Bowers (1977) collection and are identified by the symbols used in that reference.
They span the range from very soft to very stiff. Added to these are Eos proposed by
Friedman & Pandharipande (1981; gos denoted by FP), by Prakash et al. (1988;
PAL1 for their function F(u) = u; PAL3 for F(u) = 4/u), and by Weise & Brown
(1975; ).

For each Eos, the key uniformly rotating model is the one with maximum
gravitational mass and baryon mass. This model rotates with essentially the
maximum angular velocity €, .., for the given Eos, that is consistent with uniform
rotation and stability against gravitational collapse. Properties of these maximum-
mass models are exhibited in table 1. One evident feature is that softer ros allow
larger maximum angular velocities. This is because the dynamical timescale, as
determined by the inverse square-root of the average density, is shorter in the
corresponding configurations. In fact, close examination reveals that

Pmax | o 076 (Ms ) (_Bs )
(10" s‘l) ~ 076 (MQ) (10 km (1.72)

to better than 7% accuracy (Haensel & Zdunik 1989 ; Friedman et al. 1989). Here M,
and R are the mass and radius of the maximum-mass non-rotating configuration for
the given equation of state. Rotation increases the maximum mass above M, by
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Figure 4. Maximum angular velocity €2, against M for 11 ros. Single letters labelling curves follow
the notation of Arnett & Bowers. FP refers to the Friedman—Pandharipande equation of state,
to an EOs with pion condensation due to Weise & Brown, and PAL1 and PAL3 are equations of
state in the parametrized family considered by Prakash, Ainsworth and Lattimer (see text). For
each equation of state, the final dot represents the configuration with maximum mass and with the
maximum angular velocity consistent with stability against collapse. The dotted line marks the
frequency, Qg = 1.237 x 10% 571, observed in SN 1987A.

ca. 15-20 %. This has the interesting consequence that rotating models with M > M
exist and are stable if their rotation rates are sufficiently high. If such a model spins
down, say by radiating away angular momentum via gravitational waves, it must
eventually reach a point at which it becomes unstable and undergoes gravitational
collapse.

Another evident fact is that few Eos simultaneously satisfy Q.. 2 1.25x 10*s™*
and M > 1.44M . This latter condition is required to accommodate the measured
mass of the binary pulsar PSR 1913 + 16 (Taylor & Weisberg 1989), and it is satisfied
only by Eos that are sufficiently hard. Because of this, and because of the fact that
Q. .. decreases as hardness increases, observation of a value of Q 2 1.25x 10*s™*
would rule out almost all Eos that have been proposed. A final point about table 1 is
that most E0s yield ratios of rotational energy to potential energy that satisfy 7/W <
0.12. Hence it appears unlikely that non-axisymmetric Jacobi-like configurations
in uniform rotation can form. This is unfortunate from the point of view that such
configurations could be strong emitters of gravitational waves (cf. Ipser & Managan
1981). As has been pointed out elsewhere (Glendenning 1990), an exception to the
rather low limit on 7'/ W occurs for the case of stars envisaged as made up of strange-
quark matter. In such objects the pressure vanishes at a density of the order of
nuclear densities. This yields configurations with small radii for all stellar masses
available and permits large values 7/W =~ 0.18 and £, ,, 2 1.6 x 10* s7*, depending
on the density at which pressure vanishes.

Figure 4 exhibits a plot of the maximum angular velocity £y that can be exhibited
by models of a given mass, for each Eos. The curve for each E0s terminates at the
maximum-mass model of table 1. For reference, the dotted line marks the spurious
angular velocity Qg once attributed to SN 1987A, the recent Magellanic Cloud
supernova.
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The stiffer Eos have Q.. < Q2¢. In fact the only Eos in the figure that
simultaneously yield Q.. > Qg and M > 1.44M are nt, A, F' and FP, with the
latter two barely making it. Notice that for a fixed mass M, Qy decreases as the
stiffness of the EOS increases. Hence, if the mass M of a millisecond pulsar could be
pinned down, its observed rotation rate could be used to rule out all of the stiffer Eos
for which Q4 (M) is less than the observed rate. Also, any observed value of 2 2
1.6 x 10* s7! would be hard to explain other than in terms of strange-quark models
or something similar.

2. Stellar oscillations and stability
(a) Perturbation theory of relativistic fluids
(i) Lagrangian and eulerian perturbations

Perturbations of rotating stars have been discussed in the context of general
relativity by a number of authors. The present discussion of perfect fluids is
essentially the formalism of Friedman & Schutz (1975) (see also Friedman 1978), and
it is closely related to work by Taub (1969), Schutz (1972), Chandrasekhar &
Friedman (1973a, b), Carter (1973) and Schutz & Sorkin (1977). The treatment of
imperfect fluids is based on that given by Lindblom & Hiscock (1983).

In discussing stellar oscillations one is interested in the time evolution of nearby
configurations having the same baryon number and the same total entropy,
configurations that can be viewed as deformations of the original equilibrium.
Formally, we introduce a family of (time-dependent) solutions

Q) = {gap(A), u(A), €(A), p(A)} (2.1)

indexed by a parameter A, and compare, to first order in A, the perturbed variables
@(A) with their equilibrium values, @(0). We further suppose that the family of
solutions @(A) is such that each member can be reached by an adiabatic deformation
of the equilibrium @(0). That is, there is to be a family of diffeomorphisms y,
mapping fluid trajectories of the equilibrium model @(0) to fluid trajectories of the
solution Q(A).

First-order departures from equilibrium can be described in two ways. The
eulerian perturbations in the quantities Q(A) are defined by

d
5Q = 13 @) ey 22)

and compare values of @ at the same point of the space-time. In the region occupied
by the original fluid, one can also introduce the lagrangian perturbations

S
~ax

where £% generates the family of diffeomorphisms y, (that is, the curve A — y,(P) has
tangent £%(P) at the point P). The field £ is termed a lagrangian displacement and
may be regarded as the connecting vector joining fluid elements in the unperturbed
configuration to the corresponding elements in the perturbed space-time.

The first order changes in the variables @ can be expressed in terms of the
displacement £* and the eulerian change in the metric

Pap = 8Gap- (2.4)

AQ [X-2 @A) =0 = 8+ H) Q, (2.3)

Phil. Trans. R. Soc. Lond. A (1992)
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Rapidly rotating relativistic stars 407
We use the relations Agop = hop+ Vo 6, +V, €, (2.5)
Aeabcd = %eabcd gef Agef' (26)

Requiring that world lines of the unperturbed configuration are mapped by y, to
world lines of the perturbed fluid implies

Au® = uuu’ Ag,,, (2.7a)

or du? = qab%gb Luululhy,. (2.7b)
The perturbed energy conservation equation, (1.13), takes the form

0= A(u,V,T%) = —A[(e+p) V,u’ +ub V, €] = —ub V,[Ae+i(e+p)¢** Ag,,]  (2.8)

with first integral Ae = —4e+p)q*° Agyp- (2.9)

This expresses the fact that the flow is isentropic. In terms of the comoving baryon
density, n, the second law of thermodynamics, (1.18), implies

(Ae)/(e+p (An)/n. (2.10)

Conservation of baryons implies that the fractional increase in baryon density is the
fractional decrease in comoving volume,

(An)/n = —19"° Ag,, (2.11)

and (2.9) follows from (2.10) and (2.11). The lagrangian change in the pressure is
similarly given by
Ap = yp(Ae)/(e+p) = —3vPg** Agyy, (2.12)

where the adiabatic index 7y is defined by

__0dlnp(n,s) e+p 0
T oln | p al®

(€, 8). (2.13)

(ii) An action for the perturbation equations

The equations governing perturbations of a perfect fluid,
3(G*? —8nT) = 0, (2.14)
vV, T =0 (2.15)

A

are a self-adjoint system. For any pairs (§%, A,,) and (£%, };ab), self-adjointness (in the
weak sense of a symmetric system) has the form

£,8(V, T%) + (1/16m) hy, 5(G*—8nT*) = — L, b1 £,h) +V,R®,  (2.16)
b c

where ¢ is symmetric under interchange of (g, Zz)ﬁand (.§ h) and where (Au®, Ae, Ap)
and (Au?, Ae, Ap) are given in terms of (£, ), (£, ), respectively, by (2.7), (2.9) and
(2.12). Because (2.8) is satisfied, u, 6(V, T“”) 0, and the component of £* along u®
does not appear on the left-hand side of (2.16).
Explicitly,
L& h;E h) = UV oo Vebat Vam(hab Ve€ithaVeta)
—(1/32m) ee9e% |V, adekef

— TR yopq £€°+ GWO — (1/16m) G2 oy g

*%Vc Tab(};’ab gc+kab gc)’ (2.17)
Phil. Trans. R. Soc. Lond. A (1992)
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and RYE bt h) = g”,,ﬂab+i2bcn““, (2.18)

102 h; & h)

ab _ — [Jabed cdab 1

where 3 ov.L Uusrety g, + Veedp, . (2.19)

10L& ;€ h) 1

abe _ — aeg(b0)df
2 OV, h,, 32n° ¢ s Voher (2.20)

Gabcd — %Ra(cd)b+%(2Rabgcd+2Rcdgab_3Ra(cgd)b_3Rb(cgd)a)
+iR(g"g" +9"'g" —g"g""), (2.21)
Uabcd — (€+p) uaucqbd +p(gabgcd_gadgbc) _,ypqachd’ (222)
and 2Vabcd — (€+p) (uaucqbd _I_ubucqad_uauchd) _,ypqachd‘ (223)
The derivation is given in detail in Friedman & Schutz (1975), but a generalization
will be sketched below. It extends to relativity the eulerian variational principle
obtained in the newtonian framework by Ipser & Managan and in the relativistic

Cowling approximation by Ipser & Lindblom. First note that (2.16) implies that an
action for the perturbation equations (2.14) and (2.15) is given by

I= f AriL(E hi L, h). (2.24)

That is, by introducing potentials £* for the perturbations we obtain an
unconstrained action. The price is an additional gauge freedom (Soper 1976 ; Carter
& Quintana 1976 ; Schutz & Sorkin 1977), a set of trivial displacements 5* for which
the physical perturbation, éu®, 8¢, dp, h,, vanishes. Trivial displacements #* are of
the form

7* = n"'e"V, hV, f+gu® (2.25)
with f and A any scalars for which *V,h =u*V,f =0 and for which V,% is along
V,s when V, s # 0.

For perturbations with harmonic time dependence (e.g. outgoing modes),

ga — ga ei(qu—ort), hab — ﬁab ei(m¢+at), (2.26)
with £ and 4 independent of ¢ and ¢, we have (see (1.53))
9% %, & = (o +me) £

and, as long as o +m&Q # 0 (the case of a trivial displacement), (2.756) can be inverted
to give

8 £ = [iu' (o +me)](du® —uu’u’h,,). (2.27)
With £* replaced in this way by du® and A,,, and with 3¢ and dp defined in terms of
du® and A, by (2.9) and (2.12), the description of the perturbation is purely eulerian.

As Ipser and his co-workers have observed, however, one can organize the
equations differently to exploit the fact that, for a mode, du® occurs algebraically in
the perturbed Euler equations,

%, 8V, T = 0 (2.28)

(Ipser & Managan 1985; Ipser & Lindblom 1989, 1990, 1992). If one initially leaves
the energy equation, (2.9) unsolved, so that

1 a
§:= —4—lut(0+mg) uaﬁ(VbT b) (229)

Phil. Trans. R. Soc. Lond. A (1992)
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is not initially set to zero, then the Euler equations (2.28) can be solved algebraically
for du® in terms of 6p and A,
A generalization of the symmetry relation (2.16) that includes u, 8V, 7 has the

f A A ~ A A ~

orm £, 5(V, T%)+ (1/16m) by, 5(G* —81T?) = — P(E h £, h) +V, B, (2.30)
a — 1 8p _1,a,b

where £, = (o1 m) (€+p Uy hab), (2.31)

and PEhER) =LE b E B~ (yp/e+p))E, (2.32)

with £% = ¢%, £ the projection of £* orthogonal to «” and ¢ given by (2.29). Equation
(2.30) is obtained as follows. The perturbed Einstein tensor has the form

(1/4/ —9)d(y/ —g G) = — 329" V V3 b oo+ G¥hyy, (2.33)
with the symmetry
ab 1/\/ \/ gGab) = eacegebdf Va h’cdvb kef
Gabcahab hea— Va(%eawgebdfg }zcdvb Poy)- (2.34)
If (2.9) and (2.12) were used to express Ae¢ and Ap in terms of £%, we would have

. (1/v/ —g) A(V —g T?%) = W*?Ag.,, (2.35)
wit
Wabcd —_ %(6 + p) uaubucud + %p(gabgcd _gacgbd _gadgbc) _ %qu“"qm — chaby (236)

and corresponding symmetry
~ 1 ~
Agabv-___g'A(\/_gTab) = Woved AgabAgcd' (237)

When (2.9) is not used, ¢ of (2.29) is non-zero and one must write
Ae = {—3(e+P) 4" Agap,
Ap = (yp/(e+p))Ae,
resulting in an additional term,
7P ) A op o7 g
+-—= Agup & = —2( ———1tuuh 2 ,
(uu 10! ) Jav (HP 2w ab)s”r (€+p)2§§
added to the right-hand side of (2.37). Then, by using (2.31), (2.37) is replaced by

Bgan(1/V/ —g) AV =g T) +28%u,u, V, 87 = W™ Ag,, Ag,y+2(vp/(e-+ ) E&.
(2.38)
Finally adding 1/16m (equation (2.34)) to (2,38) yields, after some algebra, the
symmetry relation (2.30). The functionals & g h;& k) and Z( gl,h £, h) differ by
a divergence which has been absorbed in V, R

(iii) Energy and angular momentum

Dynamical stability of a rotating star is governed by the sign of the energy of its
perturbations. The canonical energy and angular momentum can be written as
functionals quadratic in the perturbation. On a spacelike hypersurface S, with unit
normal n%, the canonical momenta conjugate to £ and A,, are given in terms of the
quantities 7% and 7%*¢ of (3.19) and (3.20) by,

1% = n, II°%, 7% = m, 7o, (2.39)
Phil. Trans. R. Soc. Lond. A (1992)
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410 J. L. Friedman and J. R. Ipser
Corresponding to the Killing vector #* is the conserved current,
Ji = I L8+ 1 Lhyy — 402, (2.40)
and the corresponding canonical energy has the form (Friedman 1978),
E = f dsS, j¢
S
= J AVII* L E, + 1" L by — 308 F ). (2.41)
S
Explicitly,

E= f A8 {UE, V£, + Veieoh,, £, — (1/32m) 649, bV, b,
S

— 3t UV &,V £y + 2V, Vo £, — (1/321) €290V by ¥, gy
- TabRacbd gcgd + %( weved — (1/1671.') Gabcd) hab hcd - Vc Tabkab gc]} (2.42)

The canonical angular momentum corresponding to the Killing vector ¢ is similarly
J = J dsS,j8 =— J dVIT* % &, + 1 L hyy,). (2.43)
s s

The fact that the currents j, and j, are conserved follow from the symmetry relation.

Along a family S, of asymptotically spacelike hypersurfaces, energy and
momentum are conserved. Along a family S, of asymptotically null hypersurfaces,
however, they change in time due to the radiation of energy and angular momentum
at future null infinity. This radiated energy and angular momentum may again be
expressed as surface integrals of ji or j§, this time at null infinity. In particular, the
canonical energy decreases monotonically from one asymptotically null hypersurface
S, to another §; in its future.

Although the currents are gauge dependent, the integrals £ and J are gauge-
invariant for gauge transformations,

5Q > 8Q+ 4.

that leave the perturbed metric asymptotically regular. The integrals are not
invariant, however, under the additional gauge freedom associated with the trivial
displacements of (3.23). This is related to the fact that £ and J agree with the second-
order change in energy and angular momentum of the equilibrium star only if the
circulation of each ring of fluid is unchanged by the perturbation (Friedman &
Schutz 1978a). One defines a class of canonical displacements by the requirement

9.9, Aweq = 0, (2.44)
in order to compute £ and J.

(b) Oscillations of rotating stars

(i) Introduction

Because of its importance for astrophysics in a variety of contexts, the problem of
the oscillations of rotating newtonian stellar models has received considerable
attention. Even so, up until very recently all attempts to obtain solutions to the
equations governing the oscillations of rotating models had been unsuccessful. The
lone exception is Clement’s (1981) analysis of certain axisymmetric normal modes.

Phil. Trans. R. Soc. Lond. A (1992)
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Rapidly rotating relativistic stars 411

In large part, the reason why the newtonian oscillation problem has posed such
difficulty is that the eigenequations for normal-mode pulsations are traditionally
written down in terms of the lagrangian displacement vector £%. This leads to a
complicated eighth-order system of equations for four dependent variables. This
system has proved intractable for generally non-axisymmetric modes. Although it
has been used to develop variational principles (Lynden-Bell & Ostriker 1967;
Friedman & Schutz 1978) for estimating normal-mode eigenfrequencies, it has
yielded little information concerning the eigenfunctions themselves. And in a variety
of contexts, detailed knowledge of the eigenfunctions is needed. For example,
knowledge of the normal-mode eigenfunctions, in addition to the eigenfrequencies, is
required for accurate assessment of the combined effects of gravitational radiation
reaction and of viscous dissipation on the evolution and stability of millisecond
pulsars, and for understanding the interaction between a pulsating star and a
surrounding accretion disc.

We describe here a method developed recently (Ipser & Managan 1985; Managan
1985; Ipser & Lindblom 1990, 1991a, b) for solving the normal-mode equations of
rapidly rotating newtonian stellar models. This method involves a reformulation of
the stellar-pulsation equations in terms of two potential functions: 3@, the eulerian
perturbation of the gravitational potential, and 68U, the difference between the
eulerian perturbation of the enthalpy and §®. When the eigenequations are rewritten
in terms of 83U and 3@, a relatively simple fourth-order system of equations is
obtained. This system has been solved successfully for both the eigenfrequencies and
eigenfunctions of normal modes.

(it) The two-potential formalism

The basic equations governing the evolution of a newtonian fluid configuration are
the continuity equation, Euler’s equation, and Poisson’s equation :

p /ot +V ,(pv*) = 0, (2.45)
PO/t + 1PV, v%) = = Vo + pV° D, (2.46)
VeV, d = —4nGp. (2.47)

Here the variables p, v?, p, and @ are the mass density, velocity vector, pressure, and
gravitational potential, respectively; ¢ is Newton’s constant; V, is the standard
euclidean covariant derivative. Throughout this subsection tensor indices are raised
and lowered with the three-dimensional euclidean metric g,, and its inverse g*°. (In
cartesian coordinates, g¢,, is the identity matrix.)

We are interested in the pulsations of an equilibrium stellar model that is
axisymmetric and rotating, perhaps differentially, about its z-axis. Hence the
unperturbed velocity field is of the form v* = Q¢%, where Q is the equilibrium angular
velocity and ¢® is a rotational Killing vector field that satisfies

Vot +V,0,=0. (2.48)

Our demand that meridianal circulation be absent from the equilibrium state implies
that (2.46) has the first integral

%szawz = (Vap)/p_va(p? (249)

where w is the standard cylindrical radial coordinate.

Phil. Trans. R. Soc. Lond. A (1992)
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412 J. L. Friedman and J. R. Ipser

Given an equilibrium configuration, we focus on small perturbations of its
structure and motions away from equilibrium. We obtain the evolution equations
governing these perturbations by linearizing equations (2.45)—(2.47) in the
perturbations. This yields the perturbed equations

dp/dt+v*V,8p+V,(p0v%) =0, (2.50)
080% /At +1° V, 00% + 30° V0% = — (V2 3p)/p + 3p(Vep) /p* + V0D, (2.51)
V,Ve3d = —4nG 3p. (2.52)

As usual, the symbol & denotes the eulerian perturbation of a quantity. Quantities
not preceded by a & are understood to be equilibrium values. We complete the
system of perturbed equations by assuming that the lagrangian change in pressure is
proportional to the lagrangian change in the density:

Ap =38p+&*V,p = (yp/p)Ap = (yp/p)(Bp+E*V,p), (2.53)

where v is the adiabatic index, and £* is the lagrangian displacement. The vector £*
is related to the velocity perturbation by the relation

v = OEL /Ot + 10V, £ — £2V, 0", (2.54)

The traditional analysis of the perturbation equations involves eliminating 6v% in
favour of £%. The alternative method that has been developed recently proceeds in a
different way, by eliminating £* in favour of 6v%, and by then eliminating dv® itself
in a way that we now describe.

We focus on the normal-mode solutions to the above perturbation equations, i.e.
those solutions with time dependence e'“ and azimuthal-angle dependence ei™?,
where o is the mode frequency and m is an integer. For these modes, (2.54) yields an
algebraic expression for £ in terms of 8v° (or vice versa):

£y = —i(gu/o— (6, V, 2)/0%) 8, (2.55)

where o = w+m£. Equation (2.53) now takes the form
8p = (p/yp) 3p + (ip*/) A, 80, (2.56)
where A, = (Vap)/p*—(Vap)/vPP. (2.57)

Note that 4, =0 for barotropic configurations, which have adiabatic index
v = (p/p) (dp/dp). For general configurations, such as those in which the pressure
is not a unique function of the density, 4, does not vanish. With 3p eliminated via
(2.56), (2.53) has the representation

iO'Q;; S’ = (iggab + 2Vb va_¢a Vb‘Q_ (1/0-) VapAb) o’ = _Va BU_p(8U+ S(ﬁ)Aa,
(2.58)
where U = (8p)/p—90D. (2.59)

Notice that (2.58) is algebraic in 8»* and can be solved for §»* as long as Q.3 is
invertible. In this case the solution to (2.58) for dv* is

v = iQWV, SU+ip(8U + 5P) Q™ A,, (2.60)

where
QW = (A/d®)[(c?—A°V,p) g™ — 20 Q% +i0d* V°Q
—2ieQ Vi + VipA® +(i/0) p*¢*° V, pAiw,— (2i/0) p?¢p* 4,2V p]. (2.61)
Phil. Trans. R. Soc. Lond. A (1992)
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Rapidly rotating relativistic stars 413
Here det@ 1'%, =c®/A = (1/0)(c*—d?4°V,p—20Q2%0,+24%,Q2°V,p); (2.62)

0 = €V, v, and is the fluid vorticity ; €,,, is the antisymmetric tensor (components
=41 in cartesian coordinates); 2% = Q2% where 2% is a unit vector parallel to the
rotation axis, and is the fluid angular-velocity vector; and ¢* = ¢**“¢_ /%P ,.

We use (2.60) to eliminate dv” in favour of 3U and 3®. And we eliminate §p by
combining (2.50), (2.59), and (2.56), which yield

dp = W,(8U+8®D)—(p*/0)A,Q*°V,8U, (2.63)
where Y, = p?/yp—(p®/o) 4, Q"A4,. (2.64)
We have not yet used (2.50) and (2.52). It is these that now provide the fundamental
set of coupled eigenequations for the two potentials 6U and 6®. Using (2.59), (2.60),

and (2.63) to eliminate 3p, dp, and 6v®, we are able to re-express (2.50) and (2.52) as
the fourth-order system

V., (pQ®V,8U)+ ¥,8U = —p*Q**4,V, 0@ — ¥, 5P, (2.65)

VeV, 8@ +4nGY, 8P = (4nGp*/a) A, Q*°V,dU—4nG¥, dU, (2.66)

where Y, =¥, +V,(p*Q"°4,), (2.67)
Y, = ¥,—(mA/d?) p*(cA*V,Q+ (402 /w) AV ,w+ (1 /o) A, $p**V, pAw,). (2.68)
(2,

It is easy to verify that (2.65) and (2.66) are real equations for 6U(z, w) and 3@
where U = 8U(z, w) e'“*im? and 8@ = dP(z, w) et H1m?,

We complete the specification of the eigenvalue problem by imposing appropriate
boundary conditions at the stellar surface and at » = oo, where r is the spherical
radial coordinate. At the stellar surface the appropriate boundary condition is that
the lagrangian change in the pressure vanishes, i.e. that

Vp=3p+£&V,p=0 (2.69)

at the stellar surface. It follows from (2.55), (2.59), and (2.60) that this condition can
be rewritten as

@),

SU+8D+(V, p/p) Q[V, U+ pA, (U +8®)] = 0. (2.70)

The remaining boundary condition is that 8@ — 0 sufficiently rapidly as »— oo. For
a perturbation with ¢-coordinate dependence e!™?, examination of the expansion of
8® as a power series in negative powers of r reveals that this condition can be
expressed as

(I+1) 20+ 1) (I—
&5¢+l§ml 2/ (It m)!

m)' 1 N DM, ’
Pr(u) J SO(r, 1) PP i’ =0, (271)

where 4 = cos 8, 6 is the polar angular coordinate, and P} is the associated Legendre
function.

(iii) The numerical method of solution

We next describe briefly a numerical method that has been developed and used to
solve the eigenequations directly for w, 8U, and 8®. For more details, the reader is
referred to the extensive discussion presented elsewhere (Ipser & Lindblom 1990).

In the method of Ipser & Lindblom, the equations describing the equilibrium of a
stellar model and the eigenequations (2.65), (2.66), (2.70), (2.71) describing a normal
mode of pulsation are first written out in spherical coordinates r, u = cos 6, p, and are
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then represented as difference equations on a finite grid. The chosen grid consists of
uniformly spaced points along (2L — 1) radial spokes that emanate from the origin at
the zeros p; the Legendre polynomial £,; ;. This choice of the angular location of
spokes permits one to accurately represent integrals of a function over u, and its
various derivatives with respect to u, as weighted averages of the values of the
function at the various p,. Radial derivatives of a function are represented in terms
of standard three-point difference formulae. For convenience, the boundary conditions
(2.70) is imposed not only at the last point inside the star along each spoke but also
at all points outside the star out to the last grid point along the spoke. This amounts
to a smooth extension of the definition of 3U into the exterior region, and it simplifies
the numerical analysis. The boundary condition (2.71) is imposed at the last grid
point along each spoke.

When this procedure is completed, the eigensystem takes the form of a set of
coupled linear equations for the values of U and 8@ at the grid points:

YBLdU, =XC,3¢p,, (2.72)
b b

YD, 8, = S E,'8U,, (2.73)
b b

where the indices label the grid points. Equations (2.72) and (2.73) can be combined
to yield a single equation for either 3U, or 8@, but it turns out to be more efficient
to leave them as separate equations and to solve them iteratively as follows. Given
an estimate 8U®, @9 »® for the eigenfunctions and eigenvalue (taken, perhaps,
from the solution obtained for a slightly different stellar model), (2.73) is solved
for the new estimate 6@%“™V, which is then used in (2.72) to find UV, Next, a
suitable average <{8U) of the values 3U, is used to compute the quantity 2 =
U /{3UD Y, which monitors the average change of U from one iteration to the
next. The quantity z® is used to update the eigenvalue in a way that attempts to
predict the value that will make 2%*? as close to unity as possible:

WD = @ pg(1 —2®) (0D — D) /(20 — 6-D),

Here s <1 is a convergence factor chosen to maximize stability of the iteration
process. Iteration continues until convergence is achieved.

(iv) Results

We now describe very briefly the results obtained by applying the above method
to study the ! = m f-modes, those having no radial nodes in the non-rotating limit of
uniformly rotating polytropes (see Ipser & Lindblom (1990) for details). These
configurations have an equation of state and adiabatic index given by

p=kptVn vy =1+1/n, (2.74)
which implies 4, = 0.

The dependence of the eigenfrequency w on the angular velocity  is conveniently
expressed in terms of the function

A (82) = (w(22) +m82)/w(0). (2.75)

Figs 1-6 of Ipser & Lindblom (1990) reveal that «,,(£2) is a slowly varying function
of 2 and of the polytropic index n. Its value generally varies by less than 30 % from

Phil. Trans. R. Soc. Lond. A (1992)
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unity in uniformly rotating models. For given n, «,,(£2) typically rises from unity at
2 = 0to a maximum value <1.2 and then drops to a value somewhat less than unity
(by 20% or so) as £, reaches the value £ at which sequences terminate due to
equatorial shedding. The eigenfrequency w passes through zero at a value £, whose
ratio Q,;,/2 ., increases with decreasing m and with increasing n. This ratio has the
value 0.878 for m = 4 and » = 1, for example. Figs 7-14 of Ipser & Lindblom (1990)
reveal that the eigenfunctions 86U of modes become more highly peaked near the
stellar surface as £ increases, as n increases, and as the angular indices | =m
increase. For a typical mode, the solution for 3U yields lagrangian displacement
vectors with nearly equal radial and axial components that are out of phase. This
indicates that the motion of a fluid particle is approximately circular motion about
its equilibrium position.

In the absence of viscous dissipation, gravitational radiation reaction induces a
secular instability in the I = m f-modes at the point where w passes through zero. Now
that the exact eigenfunctions can be obtained by the above method, one can provide
a much more reliable estimate, for a given viscosity model, of viscous effects on the
instability. As is discussed elsewhere in this paper (also Ipser & Lindblom 1989,
1991 a), analyses using the exact eigenfunctions indicate that viscous effects stabilize
all modes to the secular instability unless 2/Q, .. =2 0.9. Using a slow-rotation
approximation, Weber & Glendenning (1991) report a substantially lower estimate
of the instability point. We believe that the Ipser-Lindblom estimate is more
accurate, but a precise determination of the general-relativistic instability points is
overdue.

(¢) Stability
Two kinds of instability limit the region of uniformly rotating relativistic stars. An
axisymmetric instability sets upper and lower limits on the central density and
baryon number at fixed angular momentum; and a non-axisymmetric instability,
driven by gravitational radiation can set a limit more stringent than the Kepler
frequency on the maximum angular velocity.

(i) Axisymmetric instability

For spherical stars, any perturbation can be written as a superposition of spherical
harmonics that are axisymmetric about some axis, and one therefore need only
consider stability of axisymmetric perturbations. In fact, apart from local instability
to convection when the temperature gradient becomes super-adiabatic, one need
only consider radial perturbations (Detweiler & Ipser 1973). For radial oscillations of
the Schwarzschild geometry, the functional £ was first obtained by Chandrasekhar
(1964). In newtonian gravity, instability sets in when the matter becomes relativistic,
when the adiabatic index y (more precisely, its pressure-weighted average) reaches
the value 4 characteristic of zero rest mass particles. In relativity, even models with
the stiffest equation of state must be unstable to collapse for some value of
R/M > 2, the ratio for the most relativistic model of uniform density. For stars with
v near £, general relativity may be important for radii large compared with M (Fowler
1964 ; Chandrasekhar 1964). To determine the instability points is simple in practice
if one models neutron stars by one-parameter Bos. Misner & Zapolsky (1964) noticed
that, along a sequence of such neutron star models, the configuration at which the
functional £ first becomes negative appeared to be the model with maximum mass.
The reason is that by using a one-parameter state E0s, one makes the approximation
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that the adiabatic index governing the pulsations is the polytropic index of the
equilibrium star, that

_dp/dr e+p
T p de/dr

Then a turning-point method, due initially to Poincaré, implies that points at which
the stability of a mode changes are extrema of the mass (Oppenheimer & Volkoff
1939 ; Harrison et al. 1958 ; see Thorne (1967, 1978) for later references and a review
of the turning point method applied to spherical neutron stars; a somewhat different
treatment is given by Zel’dovich & Novikov (1971)).

For dynamical oscillations of neutron stars the adiabatic index does not coincide
with the polytropic index of the star, and the turning point method locates a secular
instability, one whose growth time is long compared with the typical dynamical time
of stellar oscillations. The turning-point instability proceeds on a timescale slow
enough to accommodate the nuclear reactions and energy transfer that accompany
the change to a nearby equilibrium. In the case of rotating stars, the turning point
similarly marks a zero-frequency ‘mode’, in the sense of a time-independent
perturbation of the star. The perturbation is again not dynamical, and in this case the
timescale must also be long enough to accommodate the transfer of angular
momentum needed to keep the angular velocity uniform. That is, the growth rate of
the instability is limited by the time required for viscosity to redistribute the star’s
angular momentum. For neutron stars, this is expected to be short, probably
comparable with the spin-up time following a glitch, and certainly short compared
with the lifetime of a pulsar or an accreting neutron star.

The argument can be stated heuristically as follows. When the mass has a
maximum along a curve of constant J, the total baryon number turns over as well,
because of the relation (Bardeen 1972)

AM = QdJ + udN. (2.77)

(2.76)

At the turning point, nearby models have (to first order in the path parameter ¢) the
same angular momentum, baryon number and mass. The corresponding perturbation
relating two such equilibria is then a time-independent solution to the linearized
equations of a perfect fluid in general relativity, but a solution for which the angular
momentum of each fluid element changes (when the star is rotating).

Models on the high density side of the instability point are unstable because the
injection energy is a decreasing function of central density. The relation can be
understood if one considers again a sequence of stars with fixed angular momenta.
The turning point is a star with maximum mass and baryon number, and on opposite
sides of the turning point are corresponding models with the same baryon number.
Because 4 = M /0N is a decreasing function of central density, the model on the high-
density side of the turning point has a greater mass than the corresponding model
with smaller central density. For spherical neutron stars, the low-density endpoint
of the equilibrium sequence is again an extremum of the mass, in this case a
minimum. For rapidly rotating stars, however, only the high density endpoint of a
constant J sequence is an extremum of the mass. As the density is lowered at fixed
J, the binding energy decreases and the sequence terminates by mass shedding: the
equator rotates with angular velocity equal to that of a particle in keplerian orbit.

The stability criterion in the form discussed above is stated as the theorem below.
An important feature of the criterion, however, is its independence of the parameters
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chosen to label the equilibrium models. We therefore first state the principal result
in a way that does not restrict the parametrization. A stellar model will mean a
stationary, axisymmetric solution to the Einstein field equations with perfect fluid
source.

Lemma. Consider a two-parameter family of uniformly rotating stellar models having
an E0s of the form p = p(e). Suppose that along a continuous sequence of models labelled
by a parameler A, there is a point A, at which both N(= dN/dA) and J vanish and where
(QJ + jiN) # 0. Then the part of the sequence for which (J + iN) > 0 is unstable Sfor A
near A,.

Proof. The result follows from Theorem I of Sorkin (1982), with his function S
replaced by —M, with E* replaced by N and .J, and with his £, replaced by x and Q.
The conditions of the theorem are satisfied because stellar models are configurations
for which M is minimized at fixed N and J.

One may phrase the criterion in terms of an extremum of the mass or rest mass,
choosing a sequence of stars along which the total angular momentum is constant.
Alternatively, one may use an extremum of the angular momentum, choosing a
sequence of stars along which the total rest mass is constant. This latter form is
emphasized by Cook et al. (1992).

Theorem (Friedman et al. 1988). Consider a continuous sequence of uniformly
rotating stellar models based on an EOS of the form p = p(e). Suppose that the total
angular momentum is constant along the sequence, and that there is a point A where
M = dM/dA = 0 (and where w>0, (@) #0). Then the part of the sequence Sfor which
AM > 0 is unstable for A near A,

The turning point is similarly an extremum of J along a sequence of constant N.
Note that the theorem is a straightforward application of the turning point method
in the form given by Sorkin (1981, 1982), and it requires no assumptions about
existence or completeness of normal modes.

Another way to describe the instability should be mentioned. The stellar models
comprise a two-parameter set, 2, the surface of figure 1. The map that assigns to each
star its mass M and angular momentum .J is a projection of 2 onto the M—J plane.
In most places the map is 1-1, but along a curve [/ it becomes non-invertible, because
the sheet doubles back on itself, leaving a portion of the M—J plane uncovered. On
one side of the image of [ in the M—J plane lie values of mass and angular momentum
to which no model corresponds. On the other side, in a neighbourhood of [, there are
two distinct stars belonging to separate branches of 2. Of these two stars, one might
expect the one with greater energy to be unstable, because, by definition, there is
another configuration with lower energy. The above theorem justifies this
expectation.

For a star that becomes unstable, the outcome of the axisymmetric instability
depends on whether the mass is a maximum or a minimum. Matter accreting on a
neutron star that is at its maximum mass will lead to gravitational collapse. If, on
the other hand, a neutron star is near its lower mass limit, loss of matter (for
example, by tidal stripping in the coalescence of a binary system of two neutron
stars) leads to explosion, because the unstable models have positive binding energy,
they are unbound.

To locate points of dynamical stability to axisymmetric perturbations along
sequences of rotating relativistic stars, one must evaluate the functional £ of (2.41)
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for a set of trial functions (Schutz 1972; Chandrasekhar & Friedman 1972b), and no
explicit calculations have as yet been attempted. Fortunately, in addition to its
simplicity, the turning-point criterion has the virtue that secular rather than
dynamical instability can be expected to limit the class of observed neutron stars: a
sequence of uniformly rotating neutron stars becomes dynamically unstable after it
has become secularly unstable.

(if) Nom-axisymmetric instability

For hot neutron stars, non-axisymmetric instability appears to set an upper limit
on rotation more stringent than Q. The instability is driven by gravitational waves,
and arises in the following way. For slowly rotating stars, gravitational waves carry
positive angular momentum, ./, from a forward mode and negative J from a
backward mode, thus damping all non-axisymmetric perturbations.

But when mQ ~ o, the mode that moves backward relative to the star is dragged
forward relative to an inertial observer. Gravitational waves now carry positive
angular momentum from a mode that already has J < 0 (the perturbed star has
lower . because the perturbation moves backward relative to the star) so
gravitational radiation drives the mode. The Dedekind bar instability found by
Chandrasekhar (1970) is the m = 2 case of this mechanism, but higher modes are
unstable first, and neutron stars probably reach the Kepler frequency before an
m = 2 mode can ever become unstable.

When the growth time of a mode is longer than the viscous damping time,
viscosity will stabilize the mode. Viscosity rises sharply as a neutron star cools, and
only newly formed or, possibly, accreting neutron stars are hot enough for the non-
axisymmetric instability to play a role.

Formally, in the absence of viscosity, the instability follows from the form of the
second order change £ in the energy, for a canonical displacement £*. That is, if ¥ is
negative for any initial data (£, &, h,,, £h,,) on a spacelike hypersurface S,
satisfying the constraint equations

8(G*t — 8T n, = 0, (2.78)

and preserving vorticity (equation (2.44)), then the configuration is unstable or
marginally unstable: there exist perturbations which do not die away in time. If £
is strictly less than zero, the time-derivatives % ¢ and % h,, remain finitely large for
all times, and the configuration will be strictly unstable unless there are time-
dependent solutions to the perturbation equations which do not radiate For non-
axisymmetric perturbations, this seems clearly impossible, but there is no formal
proof.

In particular, by a choice of £&* orthogonal to the Killing vectors d and ¢, the
energy functional has the form

B = —ymQy j (e+p) £V +0(m), (2.79)

negative for sufficiently large m. Explicit points of instability along the Maclaurin
sequence of uniformly rotating, uniform-density newtonian models were found by
Comins (1979a, b) for the I = m modes (for each value of m these become unstable at
the lowest value of ) and by Baumgart & Friedman (1986) for a larger set of modes.
For polytropic newtonian models with stiffness comparable to that of neutron stars,
instability points of modes with m = 3, 4 and 5 were found by Imamura et al. (1985)
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and Managan (1985). Managan used the eulerian variational principle mentioned in
§1, obtained by algebraically solving Euler’s equations for the change dv in the fluid
velocity. These results were subsequently confirmed by the explicit construction of
normal modes (Ipser & Lindblom 1990).

For a perfect fluid, the growth time of an unstable mode (and the damping time
of a stable mode) is the radiation reaction time. For perturbations of spherical stars,
with angular dependence Y, (6, @), this has the approximate value (Detweiler 1975)

N(l—l)[(2l+1)!!]2[ 2+1 ]z(R)H%
o ) w Tayn>

+0i+2  2-n)\m (2.80)
rapidly increasing as [ increases. Work by Detweiler & Lindblom (1977) suggested
that viscosity would stabilize any mode whose growth time was longer than the
viscous damping time, and this was confirmed by Lindblom & Hiscock (1983).

For an imperfect fluid, the lagrangian change Ay 7" in the perfect fluid stress
tensor (equation (2.35)) is modified by the addition of terms involving viscosity and
thermal conductivity. If # and § are the coefficients of shear and bulk viscosity, and
da®, 36, and 8¢ are the changes in shear, expansion and heat flow (assumed to
vanish for the equilibrium model), one has (Lindblom & Hiscock 1983)

AT = Apyp T + (nTuu® -+ (3p/3s) ¢°°) 85— 29 8° — {q° 80 + 2u(*3¢». (2.81)

The corresponding change in the Euler equations is given by

0=AV, 7% = App V, T — F?, (2.82)
where F =V, {2935 + {q"° 860 — 2u*8¢q” — (nTuu® + (0p/ds) ¢*°) As}, (2.83)
and the loss in the energy of a perturbation from one hypersurface to another has the
form
di [(dE 1 ab N R
— == —|dr= — . 2.84
Y (dt )GRR Jdr " {217 S da,,+ (80)% + w7l 8q,9q, ( )

Detailed computations of the viscous damping time have been carried out by
Cutler et al. (1990) for normal modes of spherical stars. They use a shear viscosity
dominated by electron scattering in the superfluid with % given in c.g.s. units by
(Flowers & Itoh 1976)

= 6.0 x 10"%(p;/T3)°.

When temperatures are high enough to preclude superfluidity, neutron scattering
dominates the kinematical viscosity. The bulk viscosity for normal neutron matter
has been estimated by Sawyer (1989), who obtains (in c.g.s. units)

£, = 6.0 x10%(p,, /o) e"(T)°.

(Sawyer also gives estimates for pion condensates and strange quark matter.) For
temperatures below about 5 x 10°K, shear viscosity dominates.

However, at temperatures below the superfluid transition temperature, Lindblom
& Mendell (1992) claim that friction between electrons and neutron vortices is the
dominant dissipative mechanism and that it is always large enough to damp the non-
axisymmetric instability.

This means that there is only a narrow window of temperatures for which the non-
axisymmetric instability limits the rotation of neutron stars: It appears that above
2 x 10K, bulk viscosity damps all modes and below about 10°K, the Lindblom-
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Mendell mechanism damps all modes. Neutron stars formed from the collapse of
accreting white dwarfs are likely to have their rotation limited by the instability.
If Lindblom & Mendell are correct, however, neutron stars spun up by accretion will
never be hot enough to be unstable. The class of accretion-driven neutron stars may
therefore have a slightly higher limiting frequency than the class of neutron stars
with dwarf progenitors.

This work was supported in part by NSF Grants nos PHY91-07007, PHY91-05935, and NASA
Grant no. NAGW-2951.
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